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Abstract

An analytical solution is derived for the stress field due to an edge dislocation located near a coated inclusion in a
solid by using the Muskhelishvili complex variable method. The force on the dislocation is calculated. Examples for
various coating thickness and material constant combinations are given and discussed. It is shown that when a coating
layer is thick, the elastic properties of the inclusion have no significant influence on the force on the dislocation.
Therefore, the equilibrium position and the stability of the dislocation can be obtained in a manner similar to the two-
phase model adopted by Dundurs and Mura (Dundurs, J., Mura, T., 1964. Journal of Mechanics and Physics of Solids
12, 177-189.). If the coating layer is thin, both the shear modulus and Poisson’s ratio of both the inclusion and the
coating can affect and change greatly the equilibrium position and the stability of the dislocation. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The study of dislocations interacting with inhomogeneities is motivated by the need to gain a better
understanding of certain strengthening and hardening materials, especially composite materials. Foreign
atoms in a solid matrix, vacancies in the crystal lattice and other kinds of inclusions (such as fibers in
matrix, precipitates in alloys), because of their interaction with dislocations, play an important role among
all the other factors that determine the mechanical properties of materials.

The first investigation to assess the interaction of dislocations with inhomogeneities was performed by
Head (1953), who considered a dislocation near an interface between two dissimilar materials. The force on
the dislocation was analyzed and a simple attraction—repulsion criterion was given in the paper. For the
interaction problem of a dislocation near a circular inclusion (a circular fiber) in fiber-reinforced com-
posite materials, Dundurs and Mura (1964) indicated that an edge dislocation may have stable equilibrium
positions near the inclusion. However, a screw dislocation is simply either repelled or attracted by the
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inclusion (Dundurs, 1967). The importance of studying dislocation equilibrium positions is due to the fact
that a pile-up of dislocations could coalesce into a crack nucleus (Zener, 1948).

The above work on interaction between dislocations and inhomogeneities involves an isolated inho-
mogeneity only. For two-phase materials, when the inclusion phase has a finite concentration, the dislo-
cations interact not only with the nearest inclusion but also with the surrounding ones. In order to reflect
the mean effect of these interactions, Christensen and Lo (1979) and Christensen (1979) introduced a three-
phase composite cylinder model. In the two-dimensional case, the model consists of three concentric re-
gions: The inner circular region represents the inclusion phase, the intermediate annular region represents
the matrix phase and the outer infinitely extended region represents the composite phase. Luo and Chen
(1991) studied the problem of an edge dislocation located in the intermediate matrix phase based on the
three-phase composite cylinder model.

On the other hand, in fiber-reinforced composite materials, coating on fibers is widely employed in order
to increase the bonding strength between fibers and matrix. It has now been widely recognized that con-
siderable toughness in composites with brittle but strong reinforcing fibers can be achieved by controlled
debonding of the fibers from the matrix to prevent premature fiber fracture. A coating layer around the
fiber-matrix interface can help achieve controlled delamination of the interface and prevent cracks initiated
external to the fiber from damaging the matrix. Some research work on the effect of coating on mechanical
properties of composite materials can be found in the open literature. To name a few, an investigation of
stress field due to a coated fiber embedded in infinite matrix was carried out by Mikata and Taya (1985a,b).
Qiu and Weng (1991) derived the effective elastic moduli for thickly coated particles and fiber reinforced
composites based on the models of Hasin (1962) and Hasin and Rosen (1964).

The present study investigates the interaction between an edge dislocation and a coated circular inclu-
sion. A closed-form analytical solution is derived for the stress field due to an edge dislocation near a coated
inclusion. The force on the dislocation is calculated and the equilibrium positions of the dislocation are
discussed under various material property combinations and coating thickness.

2. Formulation

The physical problem to be studied is shown in Fig. 1, where an edge dislocation with Burgers vector
By = b, +1b, is located at point (e,0),e > b near a coated fiber. Region 1, the fiber with elastic properties

3 O(x.y)

(1

4
\4

Fig. 1. An edge dislocation near a coated inclusion.
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K1, i;, occupies the inner area r < a; region 2, the coating layer with elastic properties k», u,, occupies the
intermediate area a << b, and region 3, the matrix material with elastic properties x3, 5, occupies the
outer area r = b. The three regions are denoted below by phases 1-3, respectively.

For a region bounded by a circle, say, |z| = ¢, its stress and displacement fields can be expressed in terms
of Muskhelishvili’s complex potentials as

G, + 000 = 2[(2) + B(2)], 1)
on-tion = 9(2) - 9( S ) +2( 5~ 1)t ©)
div = £ oo+ oS ) -2( -1 v G)

in cylindrical coordinates, where z = x + iy, Z = x — iy, ' = Ou, /00, v' = 0u, /00, k = 3 — 4v, v is Poisson’s
ratio and u is the shear modulus. In addition, the function y(z) can be expressed in terms of ¢(z) as

c

2

Vo =S loa+3(S) -=w0) @

For the current problem, the continuity of displacement and traction across the interfaces between the
three phases requires

o\ (x) + 0}y (z) = o) (x) +i0}3 (1), (5)

”/(1)(1') + ivl(l)(f) = ”/(2)("7) + iv’(z)(r), (6)
where © = ae'’ with 0 <0< 2n, and

0(¢) +i07 (5) = o)() + i3 (<), @)

”22)(@) + iV/(z)(C) = “/(3)(C) + i"l(z)(g) (8)

in which ¢ = be'’ with 0 < 0 < 2n. By means of Egs. (2) and (3), the traction continuity conditions (7) and (8)
are written as

D) (S) + B3 (€) = by (6) + D) (<), )

K> + 1 - K3 - 1 + .

27/42(25(2)(5) +TM¢(2)(5) —27%@3)(5) +TM¢(3)(5)7 (10)
where the superscripts “+ and “—" denote the value of the function obtained as z approaches to ¢ = be'’

from the interior and the exterior of the circle |z| = b, respectively. Using the continuation theory given by
England (1971), and with reference to the structure of ¢, (z) and ¢;)(z), the approach demonstrates that
the function Z(1)(z) = ¢5)(z) + ¢3(2) is holomorphic in the finite region a < |z| < b*/a except some sin-
gularities at poles z=-eand z = b?/e; so we express Z(1)(z) as

- b b 7 b*(e* —b?) L7
E = A,Z", 11
(1)(2) z—e Z—b2/€+ (Z b2/€ Z ( )

n**OO

where the last three terms consist of a Laurent series which is convergent in the region

£ (by - ibx)a 7 = a

b d y=—"— I
a<ld<bla and 3 (1 +x) n(l+x)

(b, +1b,).
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Since at z = ¢ = b, Z()(c) = $2)() + ¢3(c), by virtue of Eq. (11), Eq. (10) is reduced to the Hilbert
problem,

D5 (c) +mbg(c) = fil¢) (12)
with
:K3:u2+:u3’ (13)
Koply + [

y y V b (e? —b2 L7
c) — _ z A, 14
fi(e)=Fo c—e bl & (c_pe g+n; ¢ (14)

(12 + 1) (13 + 1)
Bo=————"=1=fi+mn, p=—"—"—"7=-, 15
0 Kolls + [y ! : : Kofls + [ ( )

Introducing a sectionally holomorphic auxiliary function Q(z) as

O (2) when |z| < b,
@) = { —('3I>1¢(3)(Z) when [z| > b, (16)

the Hilbert problem (12) then becomes

Q7 (c) -2 (9) =1i(9) (17)
for ¢ = be'?, 0 <0< 2n. Using Plemelj’s theorem (Muskhelishvili, 1953), we have
RIS Y 7 b — b y
Ql(z)i2ni g—zderz bz/ejL (z— b2/e) e (18)

ls|=b

Substituting Eq. (14) into Eq. (18) leads to

1 v b2 (e? — b? 7 > .\
o) =1 ST b - p ) (19)

for |z| < b and

; . \ 5 B2 _ 12 _ e
¢<3)(Z):L+<1—&> lﬁ_ _22/e+lb<e b)] " ﬁl—““ZA,nz*" (19b)
z z m o

z—e " e (z—b2/e)

for |z| > b. Subtracting ¢ (z) from Z(z) leads to

bp)(2) =B, : i P (B — Wl)ZAnZ” + Zz‘LnZ*" (20a)
n=0 n=1
for a < |z] < b and
ﬁl r Y V bZ(e — b2> —n
b0 = TR TS by ZA‘”Z * ZA”Z (200)

for b < |z| < b*/a. Then, substitution of Egs. (19) and (20) into Eq. (4) with ¢ = b leads to
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b |- Bie Biv B ¥ 1
=— — — —(7 —— i+ == 28,1 ——
Viy(2) = {A0+(ﬁ1 '71)Ao+,,ll (7 +7) n e+7’11 it 2k 0 )
@0 o (g )] 2 3
+—= =2y +7 + l—— )ey+— =y ———— — A,(n—1)"
" b2( y+7) p— B ’71 b b2 (z—e)2 (B ’71); ( )
1 _ 00 _ n 00 00 _ b2 n
_LI=h ZA*"(é) +ZA,,(n+1)z"+ZA,,<—> } (21)
M n=1 n=1 n=1 z
for a < |z] < b and
b? - (=) +eHy 7y e _ e’ 1
Y3 (2) 22—2{(1 — B +m)do t— (1 _ﬁ1)2+ﬁ(2y+7))z—e+ﬁy(z_e)2
Bi. s 1 B\ 38 -y - by
P(l m 7+ ﬁl)ez/ z—bz/e+ : m e’
1 B\ 2b*(e* — )y 1 Bi\2y ¥
Xﬁ*@*) : myoymehl Ul Bahck
(z—b%/e) m e (z—b%/e) mj z
1_ + 0 » 00 o b2 n
_i_#z,él,n(n—k Dz"+(1- B +171)ZA,,<?> } (22)
1 n=1 n=1

for |z| > b.
In the same manner, starting from the continuity conditions (5) and (6), we obtain the second Hilbert
problem,

(ibzrl)(f) + Wzﬁba)(f) = f2(7) (23)

for ¢ = ae'’, 0 < < 2m, where

Kafly +
_ ol 24
S (24)
fa(1) = B, < —dny(0)+ Y Bﬂ") (25)
with
_ Ky (K2+1) , (26)
Ky + 1y

and B,s are the coefficients of a Laurent series, which is convergent in the region a?/b < |z| < b. The so-
lution of this problem is

by (2) = (1, — B2) b1y (0) + ﬁzZBnZ" (27a)
n=0

for |z| < a and
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b)) = — B (0) + 2

B " (27b)
Uy n=1

for |z| > a. From Eq. (27a), we get two equations:
¢y (0) = (13 = B,) b1y (0) = B1By, (1, = B2) 1y (0) — ¢1y(0) = —P,By. (28)
So 5(1)(0) and ¢;,(0) can be determined as

- _ B21Bo + B> (11, — B2)Bo B1Bo + B> (11, — B2)Bo

P00 ey ey >
Subtracting ¢,,(z) from Z5(z), we obtain

bo@) = —(1 1, — BB (0) + i LT (1= ) ZB 2 (30a)
for @’ /b < |z| < a and

bu(z) = (1 - 52) S;an-" + S;an" (30b)

for a < |z| < b. Finally, substitution of Eqgs. (29) and (30) into Eq. (4) with ¢ = a leads to

2 _ o
lp(z)(z)_a {JTW By + By) — (n—1)B,z" +ZB_,,( )

n=1

+ (1—%>i(n+1)3nz”+(l—ﬁz);§n(%> } (31)

n=1

for a < |z] < b and

wU)(z):jj{ﬁz B.(5 )—mZ( )Bz"} (32)

Uy n= n=1

for|z| < a.

In order to satisfy the continuity conditions of displacement and traction at the interfaces |z| = a and
|z| = b simultaneously, the function ¢ ,)(z) expressed in Eqgs. (20a) and (30b) and v, (z) in Egs. (20) and
(31) must be compatible, respectively (England, 1971). Thus, we obtain two compatibility identities. Ex-
panding both sides of each identity into power series of z/a and comparing the coefficients of their like
powers, we obtain a set of simultaneous equations with respect to unknowns A4 =4,a", B, =
B,a"(n=0,£1,£2,...). If we further define

)

* Hy s 1 % /
A =—""(a,b, b,), B zibnb bb 33
n TE(1+K2)b(a }+lan-) n (1+K) ( +1 ) ( )
we get two sets of real simultaneous equations to determine a,,a.,, b, and b/:
(1-D)C 1\""!
R b,=—(1-D)| = = 0), 34
e amth=-1-D(5) =0 (34a)

(1-D)a_,—Ab_, =0 (n>1), (34b)
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(1-D)C

- (n_l)an+[(1C)D 1-CD

1-D 1-D

1—C 5,,0:| a_, — [I’l -1+ (1 — M)én()](xzb,,

= (1= M)l b, = (1 = C) 5 (CF = 1+ (1 = O
1 n+1 1 n—1
+(n—1)(C—D)<ﬁ> +(n—2)(l—C)(ﬁ> (n=0), (34c¢)
(n4+1a_, +a, —A(n + Do*b_, — B b, =0 (n>=1), (34d)
%a;—l—b;:(l—D)(%) (n=0), (35a)
(1-D)d —Ab =0 (n=1), (35b)
(1-D)C (1-C)D 1-CD

- 7 — g —_ e — - 2p
r—c b [I—D 1—D5”°}a" ot (Aol

1
— [1 — (1 — M)é,,o]d72n+2bln = —(1 — C)5,,0 + (1 — C)énl

B
1 n+1
— [(n —1)(C—-D)+n(l- C)ﬁz] </3) (n>=0) (35¢)
(n+1)d ,—d —An+ 1)’y + BP0, =0 (n>=1), (35d)
where §,, is the Kronecker delta, and
=1L poyp o= oo P
P 1+, —n, m
1—p e a (36)
D=1- N=—— "1 _° _4
ﬁlv 1 +ﬁ1 _ 1/’1 ) ﬁ bv o b

3. Stress distribution

The stress fields are related to the complex variables through

0w = Re[26(2) — 2¢/(2) — w(2)]
6, = Re[20(2) +20'(2) + ¥ (2)), (37)
0 = Im2'(2) + V().

From the above stress functions, the stress fields in each of the three regions are evaluated through

M__ Mt {h(i) b. + 1D p } 38
Gxx 7'[(1 K2) xxx =X xxyZ Y| ( a)
O (0 (0
% = 2 1) [hmbx hmby], (38b)
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W) —_ H RO AORA 38
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where i = 1,2, 3 for regions 1, 2, 3, respectively. In the current problem, of particular interest is the stress
field in region 3 as the dislocation is located in this region. The detailed expressions of the influence
functions for i = 3 are listed in Appendix A.

It is noticed that if the materials of region 1 and region 2 are the same, then 4 = B = 0. From Eqgs. (34)
and (35), we get

a,=d,=a,=d,=0 (n>0), (39)
and
B B _(1-C)(D+1-2N) 1-N
“TRiTB—m) pa-cd) B (402)
g B _(-D(-0__Ni-D) (40b)

pA—p+m)  p1-CD)  PAN+D-1)

It is seen that the stress field is fully reduced to that derived by Dundurs and Mura (1964) for an infinite
body containing a circular inclusion with an edge dislocation nearby.

4. Force on dislocation

Following Dundurs and Mura (1964), we can calculate the strain energy of the present model by
evaluating the work required to introduce a dislocation into the given location. Thus, for the dislocation
with its Burgers vector in the x direction, the strain energy per unit thickness can be written as

1 R
W = —bx/ 0y (x,0)dx, (41)
2 e+rg

where 7 is the radius of the core of the dislocation, and R is the outer radius of the body. It is relevant to
assume 7y — 0 and R — oo. Substituting Eq. (38) into Eq. (41) with i=3 (refer to Appendix A), we have

11,b2 R pf—1 1-3C 1-D 1-CD, R
=——=* _|2]log— D)1 — log —
m 21t(1+l€2) Ogr0+(c+ )log ﬁ2 ﬁ2 + ﬁ2 1-D a_y Oge
1-CD&E&X n d 1-CDX d 1-CD& 1 4
- —n —n___ n . 42
I_D ;n_lﬂnfl—'_ I—D Zﬁn+l I_C ;n—l—lﬁ"*l ( )

Similarly, for the dislocation with its Burgers vector in the y direction, the strain energy per unit
thickness can be written as

W, —b,/R a,,(x,0)dx. (43)

+ro

Substituting Eq. (38) into Eq. (43) with i=3 (refer to Appendix A) leads to
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b2 ﬁ—l 1-C D+1-2N 1-CD R
W, = ———* |21 C+ D)l _1log —
2Tl +r) | % +( +D)log R gy R
1-CD& n a_ 1-CD&E a_ 1-CD& 1 a
n n n ) 44
+1_D;”—1ﬂ"71+ 1—D;ﬁ”“+ 1—C;”+lﬁ”+l “4)

Assuming that the dislocation can move only in a radial direction, the force on dislocation b, is defined
as the decrease of the strain energy in the solid due to the dislocation gliding a unit distance, and the force
on dislocation b, is defined as the decrease of the strain energy in the solid due to the dislocation climbing a
unit distance (Dundurs and Mura, 1964):

ow 1w, om 1om

F:——_——— = —
! de b OB’ : de b OB’

(45)

where F] is the force on the glide dislocation b,, and £ is the force on the climb dislocation b,. Substituting
Egs. (42) and (44) into Eq. (45), we have

yb? C+D 3C-D 1-CDX d. 1-CDE a
F=- x + + o +1)—=
T TRtk | B =) B 1-D ;”ﬁ 1-D ;(" )ﬁ”“
1-CDX d, 1—CD°C 1 od 1 CDS~ 1 dd.,
1 _ C — ,8"+2 Zz 1 ﬁn “on—1 aﬁ + ;W aﬁ
1-CDS 1 1 da
- N 46
1-C ;nJrlﬁ”“ aﬁ]’ (46)
wb? C+D 2N—-C-D 1-CD a, 1-CDE a.
F=— 2 + — n—=— n+1)—7"-
’ ( +r)b | (B 1) i 1—D; gt 1-=D ;( )b’””

CD

- 1-CDN n 1 da, 1-CDZS~ 1 0a_,
cz::"+2 D;n—1F aﬁ+1—D;W B
Dzoc: 1 @a,,]

n+ ﬁrﬁ»l aﬂ

(47)

where 0a,/0f, Oa_,/0f, 0d,/0p, 0a’',/Of can be obtained directly from Eqs. (34) and (35). For the con-
venience of further discussion in the following sections, we define the normalized force on the dislocation as

(1 + x)b (1l + x2)b

F = 25
: 12b? Mzbf

R, F= (48)
where Fj is the force on the dislocation b, given by Eq. (46), and F; is the force on the dislocation b, given by
Eq. (47).

5. Examples and discussions
In the present physical problem, the force on the dislocation is a complicated function of the material

constants of three phases, the location of the dislocation and the relative thickness of the coating layer. It
would make the paper too tedious and lengthy if we discussed the influence of all the parameters on the
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equilibrium positions of the dislocation. In the foregoing examples, our concern concentrates on how the
thickness and the mechanical properties of the coating layer (phase 2) affect the equilibrium position of the
dislocation.

5.1. The thickness effect of the coating layer

As a starting point, we examine the thickness effect of the coating layer on the dislocation. The nor-
malized force F; on dislocation b, versus f§ = e/b is depicted in Fig. 2 with different b/a for p,/u; =
5, /s =12, vy =v,=0.1, v3 = 0.3 for the case p,/p; > landp,/p; > 1. It is seen that when b/a is
large (the fiber is thickly coated), there is also an equilibrium position between = 1.0-1.2. Since now
OF? /3 > 0, or O*W; /o> < 0, it is an unstable equilibrium position. However, when b/a is small, there are
no equilibrium positions. The force £ (the normalized force on dislocation b, versus = e/b is depicted in

1.5
1.0
0.5
Fy
0.0 -
' —— bla=1.1
-0.5 i ----bla=1.2
o bla=1.5
e bla=5
-1.0 :

Fig. 2. Normalized force on gliding dislocation F;" vs. e/b for u,/p; =5, pr/us = 1.2, vy =0.1, v, = 0.1 and v; = 0.3.

0.35
0.30 . |
] \ — bla=1.1
0.25 , \ ----bla=1.2
0.20 ;

* 0.15- -
F ] !
0.10 '
0.05

0.00

-0.05 — T _ TI_ - 1 - T1_ T T T T T1T_ T T
0.8 1.0 1.2 1.4 1.6 1.8 2.0 22 24 2.6

Fig. 3. Normalized force on climbing dislocation F; vs. e/b for p;/us =5, uy/u; =12, vy =0.2, v, =0.2 and v; = 0.3.
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Fig. 3 for u,/us =5, py/us = 1.2, vy = v, =0.2 and v; = 0.3. Similarly, When b/a is large, there is one
equilibrium position, and since now 9F; /f < 0, or O*W5 /3> > 0, it is a stable equilibrium position. But
there is no equilibrium position when b/a is small. From these figures, we conclude that the thickness of the
coating layer can change the equilibrium position of the dislocation.

The above numerical calculations show that when the fiber is thickly coated, the results are very similar
to those given in the two-phase case (Dundurs and Mura, 1974). In fact, when b/a is large, the first two
terms in Egs. (46) and (47) dominate, i.e., the influence of the fiber (phase 1) can be neglected. So, we can
use the following approximation to roughly estimate the force on dislocation at this situation:

b? C+D 3C-D
F=- H20x ;'_ + 3 ) (49)
(1l +12)b | BB 1) i
b, C+D 2N-C-D
Fz = — . Y 5 + 3 (50)
n(l+12)b | BB 1) B
Based on Eq. (49), the equilibrium position of the dislocation b, is characterized by
C+D
2 —_— e —
Fe1-=27 (s1)
which is obtained by making F} vanish. Since § > 1, we must have either
C+D<0, C>0 (52)
or
C+D>0, C<DO. (53)

It is readily shown from 921#; /0 that Eq. (52) is a stable equilibrium and Eq. (53) is an unstable equi-
librium. It is worth noting that the material constant combinations for Fig. 2 are deliberately selected to
satisfy the conditions in Eq. (53).

Similarly, based on Eq. (50), the equilibrium position of the dislocation b, is characterized by

p=1-2 (54
which is obtained by making F, vanish. As f > 1, we must have

C+D<0, N>0 (55)
or

C+D>0, N<O. (56)

Also, it is readily shown from 0°W;/ 0p* that Eq. (55) is a stable equilibrium and Eq. (56) is an unstable
equilibrium. Again, the material constant combinations for Fig. 3 are deliberately selected to satisfy the
conditions in Eq. (55).

5.2. The effect of the shear modulus of the coating layer

Consider the following four combinations of material properties:

(a) w/u;=12, vy =01, »n=01, v;=03, b/a=1.05,
b)) w/us=12, v=02, v»=02, v;=0.3, b/a=1.05
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24 — up/p3=0.2
----uy/pg=1.2
""" Hp/pg=3

L ty/pna=8

0 I’__"“"“""‘"vf_f_-_ .......... ISR,

F, :

-1 ‘

24 !

-3 T T T T T

08 10 12 14 16 18 20 22 24 26
B=elb

Fig. 4. Normalized force on gliding dislocation F;" vs. /b for u;/u; = 1.2, vy =0.1, b/a =1.05, v, = 0.1 and v; = 0.3.

3
. . — Hp/u3=0.2
2] ' ; - Hplug=1.2
' R Uy /113=6
Vo e e Hp/uz=8
14 1
F2 0 — e
14
-2
T T T T

08 10 12 14 16 18 20 22 24 26
B=elb

Fig. 5. Normalized force on climbing dislocation F5 vs. e/b for pu,/u; =12, vy =0.2, b/a=1.05, v, =0.2 and v; = 0.3.

Figs. 4 and 5 illustrate the variation of F|" (normalized force on gliding dislocation) and F, (normalized
force on climbing dislocation) with respect to the parameter ff = e/b for the two particular material
properties with different value of p,/u; selected above. An interesting result from Fig. 4 is that, when
W/ 1y = 1.2 (4, = u,, no coating layer exists), there is an equilibrium position between ff = 1.05-1.15, where
OF; /0B > 0, or &°Ws/ Op* < 0: therefore, it is an unstable equilibrium position. Parallel results can be ob-
tained in Fig. 5 for normalized force F; on climbing dislocation.

From Figs. 4 and 5, we observe that the shear modulus of coating layer can change not only the location
of the equilibrium position, but also the stability of the equilibrium.
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Fig. 6. Normalized force on gliding dislocation F;" vs. e/b for u;/p; = uy/ps = 1.2, vy = 0.1, b/a=1.1 and v; = 0.3.
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Fig. 7. Normalized force on climbing dislocation F; vs. e/b for pu,/us = p/us =12, vy =0.2, b/a=1.1 and v; = 0.3.
5.3. The effect of Poisson’s ratio of the coating layer
Again, we consider the four combinations of material properties given as
(@) w/us=pm/us=12, vy=0.1, v;=03, b/a=1.1, (58)
(b)) w/us=w/ /=12, vy=02, v;=03, b/a=1.1.

This time we change Poisson’s ratio instead of shear modulus of the coating layer. The forces F}* and F;
versus f§ = e/b for different value of v, are plotted in Figs. 6 and 7, respectively. The equilibrium positions
of the dislocation are obtained by letting the force on dislocation zero. It is shown from the figures that
Poisson’s ratio of the coating layer (phase 2) can also change the location and the stability of the equi-
librium. Conclusions parallel to the previous subsection can be drawn through the figures.
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Appendix A

The detailed expressions of the influence functions in Eq. (38) for i=3 are given as
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where
b2
Xp=x—e, rn=xi+y, n=x——, n=x+y (A7)
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